Biosynthesis of the 24-Methylcholesterols Dihydrobrassicasterol and Campesterol in Cultured Cells of Amsonia elliptica: Incorporation of [1,2-13C2]-Acetate and [2-13C,2H3]Acetate

Shujiro Seo,*,^a Atsuko Uomori,^a Yohko Yoshimura,^a (the late) Ken'ichi Takeda,^a Hiroshi Noguchi,^b Yutaka Ebizuka,^b Ushio Sankawa^b and Haruo Seto^c ^a Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

^b Faculty of Pharmaceutical Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

° Institute of Applied Microbiology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan

Feeding experiments with $[1,2-{}^{13}C_2]$ acetate and $[2-{}^{13}C_2H_3]$ acetate in suspension cultures of A. elliptica demonstrate that campesterol has C-26 (the pro-R methyl group at C-25) and C-27 (the pro-S methyl group at C-25) arising from C-6 and C-2 of mevalonate (MVA), respectively. In contrast, dihydrobrassicasterol has C-26 and C-27 derived from C-2 and C-6 of MVA, respectively. In both 24-methylcholesterols, the methyl group derived from C-2 and C-6 of MVA retained two and three deuterium atoms, respectively. Furthermore, no signal due to a deuterium atom at C-24 or C-25 originating from [2-13C,2H₃]acetate was found for campesterol and dihydrobrassicasterol. These data suggest that both campesterol and dihydrobrassicasterol are biosynthesized by regiofacial specific reduction of the 24(25)-double bond of the 24-methyl-24(25)-ene side-chain which is formed by double-bond isomerization of $\Delta^{24(28)}$ -sterol.

Sterols have important functions as architectural components of membranes and have been suggested to play an essential role in the regulation of cell growth.¹ Cholesterol in animals and ergosterol in fungi are formed via lanosterol, while phytosterols are formed via cycloartenol which is a 9,19-cyclic derivative. Both intermediates have a 24(25)-double bond in the side-chain. The double bond is reduced to form cholesterol in animals or alkylated at C-24 and hydrogenated at C-25 to form 24alkylsterols in fungi, algae and higher plants. Common 24ethylsterols in vascular plants are sitosterol and stigmasterol, which have the 24α -configuration. A 24-methylsterol in vascular plants is a mixture of campesterol (24α) and dihydrobrassicasterol (24 β). Sterols with the 24 β -configuration generally appear in algae, fungi and three families of tracheophytes (Cucurbitaceae,² Verbenaceae³ and Crassulaceae⁴). We and others have studied the stereospecificity of the hydrogen addition at C-25 and have demonstrated that 24α - and 24β -ethylsterols,⁵⁻⁷ ergosterol,⁷⁻⁹ campesterol,⁹ 24-methylenesterols 9-10 and isofucosterol 11 have the same biosynthetic stereochemistry at C-25. These sterols have C-26 (the pro-R methyl group at C-25) and C-27 (the pro-S methyl group at C-25) arising from C-6 and C-2 of MVA, respectively. The opposite stereochemistry at C-25 was shown to exist in cholesterol,^{12,13} steroidal sapogenin¹⁴ and dihydrobrassicasterol.9 The stereoselective hydrogen attack at C-25 is reported to operate via three mechanisms: (i) reduction of the 24(25)-double bond leading to cholesterol ^{12,13} and 24α -ethylsterols, ^{7,15} (ii) reduction of the 25(26)-double bond to form 24βethylsterols⁶ and (iii) hydrogen migration from C-24 to C-25 to form ergosterol,^{7.8} 24-methylenesterols¹⁰ and isofucosterol.¹¹ Nes and Le¹⁶ recently demonstrated, using Gibberella fujikuroi that two alternative biosynthetic pathways operate in the formation of 24β-methylsterol end-products. One is for brassicasterol which is formed by hydrogen migration followed by reduction of the 24(28)-double bond similar to ergosterol synthesis and the other is for dihydrobrassicasterol which is synthesized by $\Delta^{24(25)}$ -reduction.

Recently, we reported that both campesterol and dihydrobrassicasterol are formed via an intermediate with a 24methylene side-chain in A. elliptica suspension cultures.¹⁷ The present study was undertaken to clarify the mechanism of 24aand 24^β-methylsterol side-chain formation in higher plants by using the same suspension cultures incubated with [1,2-¹³C₂]acetate and [2-¹³C,²H₃]acetate.

Results and Discussion

In our early study using cultured cells of *Physalis peruviana*,⁹ the biosynthetic chirality at C-25 of dihydrobrassicasterol was the opposite of that of campesterol. The results were obtained with a 24-epimeric mixture. Recently, Patterson¹⁸ reported the separation of this mixture and we have also recently isolated campesterol and dihydrobrassicasterol.¹⁷

The cultured cells of A. elliptica, which produce campesterol and dihydrobrassicasterol as the major sterols, were incubated with sodium [1,2-13C2]acetate. After 4 weeks, [13C]-labelled campesterol (1) and [¹³C]-labelled dihydrobrassicasterol (2)

were isolated from the cells by preparative-scale recycling HPLC. The labelling patterns were examined by ${}^{13}C-{}^{1}H$ NMR spectroscopy. The ¹³C signal assignments of C-26 (the pro-R) and C-27 (the pro-S) of the campesterol 1 and the dihydrobrassicasterol 2 were previously reported⁹ by correlation with the assignment of [27-13C]ergosterol synthesized by Arigoni⁸ and the assignments were confirmed by Colombo et al.¹⁹ who prepared (25S)-[27-²H]campesterol and (25R)-[26-²H]dihydrobrassicasterol.

As shown in Table 1, all carbons except two, C-26 and C-27, of both 24-epimeric 24-methylsterols have the same labelling

Table 1 ¹³C NMR spectral data of labelled campesterol 1 and labelled dihydrobrassicasterol 2 biosynthesized with $[1,2^{-13}C_2]$ acetate in A. elliptica

	Campest	erol 1		Dihydrobrassicasterol 2			
Carbon	δ _c	J _{CC} ^a	(J _{cc}) ^b	δ _c	J _{cc}	(J _{cc})	
C-1	37.27	s	(34)	37.29	s	(34)	
C-2	31.68	37	、 ,	31.70	36		
C-3	71.81	37		71.84	36		
C-4	42.32	s		42.34	S		
C-5	140.77	72		140.79	72		
C-6	121.71	72		121.74	72		
C-7	31.92	S		31.94	s		
C-8	31.92	s		31.94	s		
C-9	50.15	35		50.17	35		
C-10	36.51	35		36.54	35		
C-11	21.10	35		21.12	35		
C-12	39.80	35		39.80	35		
C-13	42.32	35		42.34	35		
C-14	56.79	s	(33)	56.79	s	(33)	
C-15	24.31	s	(33)	24.33	s	(33)	
C-16	28.25	34		28.22	34	. ,	
C-17	56.13	34		56.02	34		
C-18	11.88	S	(35)	11.89	S	(35)	
C-19	19.41	35	. ,	19.43	35	. ,	
C-20	35.89	35		36.22	35		
C-21	18.72	35		18.93	35		
C-22	33.72	S	(34)	33.75	s	(34)	
C-23	30.30	35		30.61	35		
C-24	38.85	35		39.10	35		
C-25	32.43	35		31.49	35		
C-26	20.22	35		17.63	s	(35)	
C-27	18.27	s	(35)	20.55	35	/	
C-28	15.39		. ,	15.48			

^a Intra-unit coupling constant of doublet in Hz. ^b Inter-unit coupling constant of doublet in Hz. ^c Singlet.

patterns. Eight pairs of doublets, C-2/C-3, C-5/C-6, C-9/C-11, C-10/C-19, C-12/C-13, C-16/C-17, C-20/C-21 and C-23/C-24, and eight singly labelled carbons, C-1, C-4, C-7, C-8, C-14, C-15, C-18 and C-22, were observed. Some of the singly labelled carbons were accompanied by a doublet due to inter-unit C-C coupling of the acetate unit but the intensity was weak. The campesterol 1 showed a doublet C-26 (δ_c 20.22, d, J 35 Hz) coupled to C-25 (δ_c 32.43, d, J 35 Hz) and singly labelled C-27 (δ_c 18.27). In the case of the dihydrobrassicasterol 2, a coupling was observed between C-27 (δ_c 20.55, d, J 35 Hz) and C-25 (δ_c 31.49, d, J 35 Hz), and C-26 (δ_c 17.63) was observed as a singlet. The singly labelled and doubly labelled methyl group is believed to originate from C-2 and C-6 of MVA, respectively. These results agree with our previous results with *P. peruviana*.⁹

In order to study the mechanism of the hydrogen addition at C-25 with opposite stereoselectivity between 24α - and 24β - methylcholesterols, the suspension cultures of *A. elliptica* were incubated with sodium $[2^{-1}{}^{3}C, {}^{2}H_{3}]$ acetate, which was added

Fig. 1 The C-26 and C-27 region of ${}^{13}C{}^{1}H{}^{2}H{}$ NMR spectra of (a) the campesterol **3** and (b) the dihydrobrassicasterol **4** biosynthesized from $[2{}^{-13}C{}^{2}H_{3}]$ acetate in cultured cells of *A. elliptica.* Signals due to campesterol contaminant in compound **4** are shown in parentheses.

in two portions every 14 days. The cells were harvested at 2 weeks after the last addition of acetate, and a mixture of [¹³C,²H]-labelled 24-methylcholesterols was isolated. The $^{13}C-{^{1}H}{^{2}H}$ NMR spectrum of the mixture showed good incorporation of [2-13C, 2H3]acetate. The mixture was subjected to recycling reversed-phase HPLC, and [13C,2H]labelled campesterol (3) was isolated. As the deuteriated compound seemed to show a leading effect on HPLC,1' the isolated [13C,2H]-labelled dihydrobrassicasterol showed weaker deuterium-labelling signals in the ${}^{13}C-{}^{1}H{}^{2}H{}$ NMR spectrum than expected from that of the mixture. We then obtained [13C,2H]-labelled dihydrobrassicasterol (4) containing the leading part of compound 4, which was contaminated by a small amount of campesterol. The ${}^{13}C-{}^{1}H{}^{2}H{}$ NMR spectrum of each sterol is shown in Fig. 1(a) and (b), and the results are summarized in Table 2. The campesterol molecules in Fig. 1(b) which contaminate the dihydrobrassicasterol 4 were not labelled with deuterium atoms; C-21 ($\delta_{\rm C}$ 18.72) showed no signals indicating deuterium atoms which are observed in Fig. 1(a). The C-26 of the campesterol 3 and the C-27 of the dihydrobrassicasterol 4, which arise from C-6 of MVA, obviously retained three deuterium atoms. The C-26 of the dihydrobrassicasterol 4 and the C-27 of the campesterol 3 were clearly labelled as ¹³C²H₂¹H, in agreement with the origin of C-2 of MVA. The C-24 resonances of both sterols 3 and 4 are shown in Fig. 2. Neither the *a*-deuterium isotope-shifted signal nor the β-deuterium isotope-shifted signal was observed at C-24, indicating loss of the 24-²H from intermediate 5. The β-deuterium isotope shifted signal at C-24 due to the stereo-

Table 2 ¹³C NMR spectral data of labelled campesterol 3 and labelled dihydrobrassicasterol 4 biosynthesized with [2-¹³C,²H₃] acetate in A. elliptica^a

	Campesterol 3				Dihydrobrassicasterol 4			
	¹³ C ² H _#	$^{1}\Delta\delta_{C,^{2}H_{1}}$	$^{1}\Delta\delta_{C,^{2}H_{2}}$	${}^{1}\Delta\delta_{\mathrm{C},{}^{2}\mathrm{H}_{3}}$	¹³ C ² H _n	${}^{1}\Delta\delta_{\mathrm{C},{}^{2}\mathrm{H}_{1}}$	${}^{1}\Delta\delta_{\mathrm{C},{}^{2}\mathrm{H}_{2}}$	${}^{1}\Delta\delta_{\mathrm{C},{}^{2}\mathrm{H}_{3}}$
C-1	¹³ C ² H ₂	-0.36 -0.43	-0.78		¹³ C ² H ₂	-0.37 -0.43	-0.77	
C-7	¹³ C ² H ₁ ¹ H ₁	-0.37			¹³ C ² H ₁ ¹ H ₁	-0.37		
C-13	$^{13}C(\beta - ^{2}H)$	-0.09 ^{b.c}			$^{13}C(\beta - ^{2}H)$	-0.09 ^{b.c}		
C-15	${}^{13}C^{2}H_{1}{}^{1}H_{1}$	-0.34			${}^{13}C^{2}H_{1}{}^{1}H_{1}$	-0.34		
C-17	¹³ C(β- ² H)	-0.11 ^{b.c}			$^{13}C(\beta - ^{2}H)$	-0.11 ^{b.c}		
C-18	¹³ C ² H ₃	-0.29°	-0.57°	-0.86	$^{13}C^{2}H_{3}$	-0.29°	-0.58	-0.86°
C-19	¹³ C ² H ¹ , ¹ H ₁	-0.29	-0.58		${}^{13}C^{2}H_{2}^{1}H_{1}$	-0.30	-0.59	
C-21	¹³ C ² H	-0.30	-0.60	-0.91	$^{13}C^{2}H_{3}$	-0.31	-0.64	-0.93
C-22	¹³ C ² H,	-0.41	-0.83		${}^{13}C^{2}H_{2}^{3}$	-0.38	-0.82	
	-	-0.42			-	-0.44		
C-26	¹³ C ² H ₃	-0.31	-0.62	-0.93	${}^{13}C^{2}H_{2}{}^{1}H_{1}$	-0.30	-0.61	
C-27	${}^{13}C^{2}H_{2}^{-1}H_{1}$	-0.30	-0.61		¹³ C ² H ₃	-0.31	-0.63	-0.94

^a Carbons labelled with deuterium atom(s) are shown; other carbons were not labelled with ²H. ^b β -Deuterium isotope shift (² $\Delta\delta_{C,^2H}$). ^c Inter-unit coupling (J_{CC} 35 Hz) was observed.

Fig. 2 The C-24, C-17 and C-13 regions of ${}^{13}C-{}^{1}H{}^{2}H$ NMR spectra of (a) the campesterol 3 and (b) the dihydrobrassicasterol 4 biosynthesized from $[2{}^{-13}C,{}^{2}H_{3}]$ acetate in cultured cells of *A. elliptica*. Signals due to campesterol contaminant in compound 4 are shown in parentheses.

specific deuterium migration (D) from C-24 to C-25 (5 \longrightarrow 6) was previously observed ^{7,10,11} in the biosynthesis of ergosterol, 24-methylenecholesterol, 24-methylenecycloartanol and iso-fucosterol. The α -deuterium isotope-shifted signal at C-24, which indicated overall retention of the 24-²H in intermediate 5, was observed in the biosynthesis of 24 β -ethylsterols.⁶ For comparison, Fig. 2 also shows the β -deuterium isotope-shifted signals of C-13 and C-17 of substrates 3 and 4 which have deuterium migrations, from C-13 to C-17 and from C-17 to C-20, take place during cyclization of 2,3-epoxydihydrosqualene.

These findings suggest that the main biosynthetic pathway $\rightarrow 6 \longrightarrow 7 \longrightarrow 8$ and 9) for campesterol and dihydrobrassicasterol in A. elliptica involves 24-methylene side-chain (6), migration of the double bond, and reduction of the 24methyl-24(25)-ene side-chain (7). The findings also supported our previous results¹⁷ which indicated the intermediate nature of the 24-methylenecholesterol side-chain (structure 6). This mechanism is similar to the biosynthesis of campesterol in Spinacea and Medicago species²⁰ and of dihydrobrassicasterol in Gibberella fujikuroi.¹⁶ 24-Methyldesmosterol isolated from *Physalis peruviana* callus²¹ and other plants²² seems to be an intermediate in the biosynthesis of 24α - and 24β methylcholesterol in higher plants. Other mechanisms, which are not major ones in A. elliptica, include reduction of the 24(28)-double bond of compound 6 for ergosterol⁷ and brassicasterol¹⁶ formation, reduction of the 25(26)-double bond of cyclolaudenol-type side-chains, and reduction of the 23(24)-double bond, which has been observed in Zea mays.²³ Although previous results were obtained as a mixture of 24α - and 24β -methylsterols, separate intermediates in the formation of epimeric 24-methylsterols were suggested to occur in tracheophytes.²⁴⁻²⁶ Other mechanisms may operate in the formation of 24\beta-methylsterol in different organisms.

C-19 retained only two deuterium atoms, indicating loss of a deuterium atom from the methyl group. This is evidence that both 24-methylcholesterols were formed *via* the 9,19-cyclic intermediate cycloartenol, while ergosterol⁷ and cholesterol,¹³ which are formed *via* lanosterol, were demonstrated previously to have their C-19 retain three deuterium atoms originating from $[2^{-13}C, ^2H_3]$ acetate.

We therefore concluded that both 24-methylcholesterols are formed via cycloartenol, a 24-methylene intermediate, and a 24methyl-24(25)-ene intermediate. Direction of reduction of the 24(25)-double bond seems to lead to opposite stereochemistry at C-24 and C-25 of the campesterol 1 and the dihydrobrassicasterol 2.

Experimental

Sodium $[2^{-13}C, {}^{2}H_{3}]$ acetate (91.6 and 97.4 atom-% of ${}^{13}C$ and ${}^{2}H$, respectively) was purchased from Cambridge Isotope Laboratories (UK) and sodium $[1,2^{-13}C_{2}]$ acetate from Amersham (UK). NMR spectra (${}^{13}C, {}^{1}H$) were obtained in $[{}^{2}H]$ chloroform with tetramethylsilane as internal standard (δ_{C} 0 and δ_{H} 0). ${}^{13}C{}^{1}H$ } NMR spectra were recorded on a Varian XL-400 instrument at 100.577 MHz. Typical FT NMR con-

ditions were: spectral width (s.w.), 17 006.8 Hz; acquisition time (a.t.), 0.882 s; and pulse flip angle, 10° . $^{13}C{^1H}{^2H}$ NMR spectra were determined on a JEOL GSX-500 instrument at 125.65 MHz under the following conditions: s.w. 18 867.9 Hz; a.t., 0.868 s (1.309 s); pulse delay (p.d.) 2.0 s; and pulse width (p.w.), 5.0 μ s. ¹H NMR spectra were obtained with a Varian VXR-200 or XL-200 instrument at 200.057 MHz under the following conditions: s.w. 3200 Hz; a.t., 2.9 s; and p.w., 12 μ s. *J*-Values are given in Hz.

Preparative HPLC was performed with LC-908 recycling preparative HPLC equipment (Japan Anal. Ind., Tokyo, Japan) with a JAi UV detector R-301 and JAi RI detector RI-3HC at 210 nm using (system A) a YMC-pack ODS SH 343 (s-15) column (250 \times 20 mm i.d.) eluted with methanol (9 cm³ min⁻¹), and (system B) a Develosil ODS T-7 (s-7) column (250 \times 20 mm i.d.) eluted with methanol (9 cm³ min⁻¹).

Feeding of Sodium [1,2-13C2] Acetate.-Tissue cultures of Amsonia elliptica (Thunb.) Roem. et Schult. were prepared as described previously.¹⁷ The callus on the agar medium was transferred onto Linsmaier-Skoog liquid medium supplemented with 2,4-dichlorophenoxyacetic acid $(1 \times 10^{-5} \text{ mol dm}^{-3})$ and kinetin (0.02 ppm). After 4 weeks of incubation, the cells were transferred into fresh medium (8.4 dm³) to which sodium [1,2- $^{13}C_2$ acetate (588 mg) and non-labelled acetate (1176 mg) were added. The mixture was incubated at 25 °C for 4 weeks on a rotary shaker in the dark. The cells (450 g fresh weight) were collected and extracted with methanol (2 dm³) and a hot dichloromethane-methanol mixture (1:1; 2 dm³). The extracts were combined (21 g) and partitioned between water (300 cm³) and butan-1-ol (300 cm³), and the butanol-soluble fraction (6.2 g) was chromatographed on a silica-gel column and eluted successively with dichloromethane (500 cm³), acetone (100 cm³), and methanol (1 dm³). The fraction eluted with dichloromethane (0.5 g) was further chromatographed on silica gel (Merck, Lobar B), eluting with a mixture of hexane-ethyl acetate-chloroform (4:1:1) to obtain a sterol mixture (79 mg). HPLC (system A) of the sterol mixture gave a mixture of (24R)- and (24S)-24-methylcholesterol (32.6 mg) together with stigmasterol (4.8 mg), sitosterol (10.2 mg), a mixture of 24methylcholestanols (6.5 mg), 24-methylenecholesterol (3.3 mg) and 24-ethylcholestanol (2.1 mg). These were characterized by ¹H and ¹³C NMR spectra. The mixture of 24-methylcholesterols was further subjected to HPLC (system B) and gave [¹³C]campesterol 1 (20 mg) and [¹³C]dihydrobrassicasterol 2

(11.5 mg); $\delta_{\rm H}$ for 1: 0.679 (3 H, s, 18-H₃), 0.770 (3 H, d, J 6.0, 28-H₃), 0.802 (3 H, d, J 6.6, 27-H₃), 0.850 (3 H, d, J 6.8, 26-H₃), 0.910 (3 H, d, J 6.4, 21-H₃), 1.009 (3 H, s, 19-H₃), 3.52 (1 H, m, 3-H) and 5.35 (1 H, br d, J 5.0, 6-H); $\delta_{\rm H}$ for 2: 0.679 (3 H, s, 18-H₃), 0.779 (3 H, d, J 6.6, 28- or 26-H₃), 0.785 (3 H, d, J 6.6, 26- or 28-H₃), 0.858 (3 H, d, J 6.8, 27-H₃), 0.922 (3 H, d, J 6.2, 21-H₃), 1.012 (3 H, s, 19-H₃), 3.52 (1 H, m, 3-H) and 5.36 (1 H, br d, J 5.0, 6-H).

Feeding of Sodium $[2^{-13}C,^2H_3]Acetate.$ —A mixture of sodium $[2^{-13}C,^2H_3]acetate$ (810 mg) and non-labelled sodium acetate (1620 mg) was dissolved in water and the solution was added to suspension cultures of *A. elliptica* grown in Linsmaier–Skoog medium (9 dm³) in two portions every 2 weeks. The suspension was incubated for a total of 4 weeks at 25 °C in the dark on a rotary shaker. The cells (632 g fresh weight) were extracted as described above. A sterol mixture (136.4 mg) was obtained by partition and silica-gel chromatography. HPLC (system A) of the sterol mixture gave a 24-methylcholesterol mixture (62 mg), which was submitted to HPLC (system B) to give $[1^{13}C,^{2}H]campesterol 3$ (34 mg) and $[1^{13}C,^{2}H]dihydrobrassicasterol 4 (23 mg).$

References

- 1 P. A. Haughan, J. R. Lenton and L. J. Goad, *Biochem. Biophys. Res. Commun.*, 1987, **146**, 510.
- 2 T. Akihisa, N. Shimizu, P. Ghosh, S. Thakur, F. U. Rosenstein, T. Tamura and T. Matsumoto, *Phytochemistry*, 1987, 26, 1693.
- 3 T. Akihisa, Y. Matsubara, P. Ghosh, S. Takur, T. Tamura and T. Matsumoto, *Steroids*, 1989, 53, 625.
- 4 M. Kalinowska, W. R. Nes, F. G. Crumley and W. D. Nes, Phytochemistry, 1990, 29, 3427.
- 5 I. Horibe, H. Nakai, T. Sato, S. Seo, K. Takeda and S. Takatsuto, J. Chem. Soc., Perkin Trans. 1, 1989, 1957.
- 6 S. Seo, A. Uomori, Y. Yoshimura, K. Takeda, H. Seto, Y. Ebizuka, H. Noguchi and U. Sankawa, J. Chem. Soc., Perkin Trans. 1, 1989, 1969.
- 7 S. Seo, A. Uomori, Y. Yoshimura, K. Takeda, H. Seto, Y. Ebizuka, H. Noguchi and U. Sankawa, J. Chem. Soc., Perkin Trans. 1, 1988, 2407.
- 8 D. Arigoni, in *Molecular Interaction and Activity in Protein*, Ciba Foundation Symposium Excerpta Medica; Amsterdam, 1978, vol. 60, pp. 243-261.
- 9 S. Seo, A. Uomori, Y. Yoshimura and K. Takeda, J. Chem. Soc., Chem. Commun., 1984, 1174.
- 10 S. Seo, A. Uomori, Y. Yoshimura and K. Takeda, J. Am. Chem. Soc., 1983, 105, 6343.
- 11 S. Seo, A. Uomori, Y. Yoshimura, H. Seto, Y. Ebizuka, H. Noguchi, U. Sankawa and K. Takeda, J. Chem. Soc., Perkin Trans. 1, 1990, 105.
- 12 G. Popják, J. Edmond, F. A. L. Anet and N. R. Easton, Jr., J. Am. Chem. Soc., 1977, 99, 931.
- 13 S. Seo, H. Saito, A. Uomori, Y. Yoshimura, K. Tonda, Y. Nishibe, M. Hirata, Y. Takeuchi, K. Takeda, H. Noguchi, Y. Ebizuka, U. Sankawa and H. Seto, J. Chem. Soc., Perkin Trans. 1, 1991, 2065.
- 14 S. Seo, A. Uomori, Y. Yoshimura and K. Tori, J. Chem. Soc., Perkin Trans. 1, 1984, 869.
- 15 Y. Tomita and A. Uomori, Chem. Commun., 1970, 1416.
- 16 W. D. Nes and P. H. Le, Biochim. Biophys. Acta, 1990, 1042, 119.
- 17 A. Uomori, Y. Nakagawa, S. Yoshimatsu, S. Seo, U. Sankawa and K. Takeda, *Phytochemistry*, in the press.
- 18 D. J. Chitwood and G. W. Patterson, J. Liq. Chromatogr., 1991, 14, 151.
- 19 D. Colombo, F. Ronchetti, G. Russo and L. Toma, J. Chem. Soc., Chem. Commun., 1990, 263.
- 20 W. L. F. Armarego, L. J. Goad and T. W. Goodwin, *Phytochemistry*, 1973, 12, 2181.
- 21 A. Uomori, S. Seo, Y. Yoshimura and K. Takeda, J. Chem. Soc., Chem. Commun., 1984, 1176.
- 22 W. J. S. Lockley, D. P. Roberts, H. H. Rees and T. W. Goodwin, Tetrahedron Lett., 1974, 3773.
- 23 N. L. A. Misso and L. J. Goad, Phytochemistry, 1984, 23, 73.
- 24 M. L. McKean and W. R. Nes, Phytochemistry, 1977, 16, 683.
- 25 M. Zakelj and L. J. Goad, Phytochemistry, 1983, 22, 1931.
- 26 N. Rendell, N. L. A. Misso and L. J. Goad, Lipids, 1986, 21, 63.

Paper 1/05750B Received 13th November 1991 Accepted 29th November 1991